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Introduction

To provide food security to the ever increasing population 
greater agriculture production is a pressing need in 21st 
century. The increasing demand for a steady and healthy food 
supply by a burgeoning human population will require efficient 
management practices along with controlling disease that reduce 
crop yield. During last few decades, agricultural production has 
increased due to the use of high yielding varieties and enhanced 
consumption of chemicals, which are used both as fertilizers 
to provide nutrition and as protection agents to control the 
damage caused by phytopathogens. Excessive use of chemicals 
and change in traditional cultivation practices has resulted in the 
deterioration of physical, chemical and biological health of the 
cultivable soil.

Globally need to increase agricultural production from a 
steadily decreasing and degrading land resource base has placed 

significant strain on the delicate agro-ecosystems. Current 
strategies to maintains and enhanced agricultural productivity 
via high input practices places considerable emphasis on 
‘failsafe’ techniques for each component of the production 
sequence with little consideration to the integration of these 
components in a holistic, systems approach. The use of chemical 
fertilizers is considered the quickest and surest way of boosting 
crop production, their cost and other constraints deter farmers 
from using them in recommended quantities.  Various studies 
report the projections of impact of climate change on different 
crops production under different simulation models in different 
continents [1,2]. Under various climate change scenarios the 
major influencing factor is availability and management of 
soil water reserves of winter wheat, especially in frequently 
occurring extreme events such as heat waves and droughts 
with decrease in annual soil and groundwater recharge [3-6]. 
However, it is expected that future climate change will affect 
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Abstract

The use of plant growth promoting bacteria may prove useful in developing strategies to facilitate plant growth under normal as well as 
diverse abiotic stress conditions. The application of microbes with the aim of improving nutrients availability for plants is an important practice 
and necessary for sustainable agriculture. During the past couple of decades, the use of microbial inoculants for sustainable agriculture has 
increased tremendously in various parts of the world. Significant increases in growth and yield of agronomically important crops in response 
to inoculation with plant growth promoting (PGP) microbes have been repeatedly reported. The actual biodiversity of PGP microbes belong to 
different groups including Actinobacteria, Bacteroidetes, Balneolaeota Firmicutes, Proteobacteria and Spirochaetes. PGP bacteria are naturally 
occurring soil bacteria that aggressively colonize plant roots and benefit plants by providing growth promotion either directly by solubilization 
of phosphorus, potassium and zinc; production of indole acetic acids, gibberellic acid, cytokinin; biological nitrogen fixation or in-directly by 
production of ammonia, hydrogen cyanide, siderophore and biocontrol against different plant pathogens. In this review, we have discussed 
method of isolation, characterization, identification and biodiversity of bacteria associated with crops and further mechanisms of plant growth 
promotion under the normal as well as diverse abiotic stress conditions.
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wheat yields. This is due to the opposing effects of temperature, 
salt, pH and drought.

Microbial diversity in soil is considered important for 
maintaining for the sustainability of agriculture production 
systems. However, the links between microbial diversity 
and ecosystem processes is not well understood. Region of 
contact between root and soil where soil is affected by roots is 
designated as “rhizosphere”. The rhizosphere is the zone of soil 
influenced by roots through the release of substrates that affect 
microbial activity. The rhizoplane is the surface, including the 
strongly adhering soil particles. Root colonizing bacteria that 
exert beneficial effect on plant development via direct or indirect 
mechanisms have been defined as plant growth promoting 
bacteria [7-10]. The concept of plant growth promoting bacteria is 
now well established both for growth promotion and biocontrol. 
Plant growth promoting bacteria were first defined by Kloepper 
& Schroth [11] to describe soil bacteria that colonize the roots of 
plants following inoculation onto seed and they enhance plant 
growth. The ineffectiveness of PGP bacteria in the field has often 
attributed to their inability to colonize plant roots [12-14]. The 
crops associated bacterial has been extensively investigated in 
the past few years with a focus on culture dependent techniques 
and PGP bacteria have been reported e.g. Agrobacterium, 
Allorhizobium, Arthrobacter, Azospirillum, Azotobacter, Bacillus, 
Bradyrhizobium, Burkholderia, Caulobacter, Chromobacterium, 
Erwinia, Exiguobacterium, Flavobacterium, Mesorhizobium, 
Micrococcous, Providencia, Pseudomonas, Rhizobium  and Serratia  
[6,15-17]. In addition to understanding the mechanisms of the 
interaction between plants and microorganisms, colonization 
mechanisms and strategies represent an important aspect of the 
interaction. Successful colonization of a PGPB inoculants strain 
is a requirement to promote plant growth or soil health. This 
review focuses on bacterial biodiversity, its characterization 
and mechanisms of PGP under normal as well as abiotic stress 
conditions. 

Isolation and characterization of plant growth 
promoting bacteria

The microbial communities associated with crops growing 
in diverse abiotic stress condition have been received much 
attention, because the food security to the ever increasing 
population greater agriculture production is a pressing 
need in 21st century. The microbes associated the crops can 
be characterized using culture-dependent techniques. The 
microbes could be isolated using enrichment and serial dilution 
methods followed by spread or pour plates technique [18].  
The rhizospheric, endophytic and phyllospheric microbes can 
be isolated using standard method of serial dilution, surface 
sterilization and leaf imprinting techniques [19]. The different 

specific and selective growth mediums should be used to 
isolate the maximum possible culturable morphotypes different 
genera such as Arthrobacter (trypticase soy agar), BBDG (T3 
agar), Methylobacterium (Ammonium mineral salt), N2 -fixing 
bacteria (Jensen N2-free agar), Pseudomonas spp. (Kings’ B 
agar), Rhizobium (Congo red yeast mannitol) and soil-specific 
actinobacteria (soil extract agar) [20]. The isolated microbes 
should be screened for tolerances to different abiotic stresses of 
salinity, pH, temperature and drought [21].

To know the PGP ability and other potential application 
of bacteria should be screened qualitatively for direct-PGP 
attributes which included solubilization of phosphorus [22], 
potassium [23]  and zinc [24]; production of phytohormones 
indole-3-acetic acid [25], gibberellic acid [26]; biological N2-
fixation [27] and 1-aminocyclopropane-1-carboxylate (ACC) 
deaminase [28]. The bacteria should be also screened for 
qualitatively in-direct PGP attributes which included production 
of ammonia [29], HCN [30], siderophore [31], lytic enzyme [32] 
and biocontrol against different fungal pathogens [33]. After 
qualitatively screening the selected bacteria with PGP attributes 
should be quantitatively screened for N2-fixing attributes by 
using the acetylene reduction assay (ARA) [34], P-solubilization 
[35]  K-solubilization [9]  and  IAA production [36].

For the molecular characterization, the genomic DNA should 
be isolated from purified pelleted microbial cells of 1.5mL broth 
should be washed 2-3 times in 1.0mL of TE Buffer (10mM Tris 
HCl and 1mM EDTA pH 8.0). Microbial lysis should be performed 
using  0.5mL SET buffer (75mM NaCl, 25mM EDTA and 20mM 
Tris) with 10μL of lysozyme (10mgmL-1) for 30min at 37 °C 
and  10% SDS with 20mgmL-1 proteinase K  for 1h at 55 °C. DNA 
should be extracted using phenol/chloroform/isoamyl alcohol 
and aqueous phase can be transferred to a fresh tube. Finally, the 
washed DNA pellet should be incubated at 37 °C for 25-30min to 
completely remove ethanol and then resuspended in 50μL of TE 
buffer. The amount of DNA extracted should be electrophoresed 
on 0.8% agarose gel [37]. The universal 16S rRNA gene primers 
should be used for the amplification of conserved genes. The PCR 
amplified 16S rRNA gene should be purified with a Quiaquick 
purification kit (Qiagen). The partial 16S rRNA gene sequences 
should be compared with those available in the NCBI databases. 
Identification at the species level was determined using a 16S 
rRNA gene sequence similarity of ≥97% with that of a prototype 
strain sequence in the GenBank. Sequence alignment and 
comparison can perform, using the program CLUSTAL W. The 
phylogenetic tree can be constructed on the aligned datasets 
using the neighbor-joining method implemented in the program 
MEGA 4.0.2 [38]. A schematic representation of the isolation, 
characterization and identification of plant growth promoting 
bacteria have presented in Figure 1.
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Figure 1: A schematic representation of the isolation, characterization plant growth promoting bacteria.

Plant-microbe interactions 

Plant-microbe interactions may be beneficial or harmful, 
depending on the characteristics of the bacteria involved and the 
ways in which they interact with plants. Among such microbes, 
PGP bacteria are distributed on plant roots or in the surrounding 
soil and have beneficial effects on plants [13]. PGP microbes may 
promote plant growth, thus providing high crop yields, and they 
also function as biocontrol agents against plant diseases caused 
by phytopathogenic microbes. Moreover, recent studies indicate 
that PGP microbes are able to boost plant tolerance to abiotic 
stresses such as salinity, temperature, pH and drought [5,9,39]. 
The PGP bacteria with multifunctional attributes can be used 
to replace chemical fertilizers and pesticides that are agents of 
pollution.

PGP bacteria produce a wide range of metabolites that 
regulate cell content according to ambient biotic and abiotic 
stresses e.g. some produce hormones such as indole acetic acids 
(IAAs), ethylene, and gibberellins that enhance plant growth, 
seed germination, and root growth. Rhizosphere bacteria are 
also able to fix nitrogen symbiotically and to solubilize mineral 
phosphates, potassium and zinc. Plant growth promotion by 
PGP bacteria requires a close relationship between the bacteria 
and their host plants. This interaction may be recognized as 
rhizospheric or endophytic [40,41]. During the PGP microbial 
colonization process, bacteria first occupy the rhizosphere. 
Endophytes are then able to enter plant tissues through 
the root zone, after which they penetrate plant cells, often 
conferring beneficial effects on hosts [41]. Biological control is 
achieved through mechanisms such as parasitism, competition 
and antibiosis which adversely affect the fitness, survival and 
reproduction of nematodes (Figure 2). 
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Figure 2:  Plant microbes-interactions and their action of plant 
growth promotion.

Biodiversity of plant growth promoting bacteria

Biodiversity is defined as the variety of living organisms 
at species, inter-species and intra-species level in ecology. 
Microbes are quite beneficial and exploited in gain of quite lot 

revenue for sustainable agriculture and human health. Microbial 
diversity in rhizospheric soil ecosystem exceeds more than 
eukaryotic organisms. One gram of soil may harbor up to 10 
billion microbiomes of possible thousands of different species, 
and thus the rhizosphere of any plant is hot spot of biodiversity 
of microbes (archaea, bacteria and fungi).  On review of different 
research on biodiversity of microbes associated with crops, it 
was found that microbes belonged to different phylum mainly: 
Actinobacteria, Bacteroidetes, Balneolaeota, Basidiomycota, 
Cyanobacteria, Firmicutes, Proteobacteria and Spirochaetes.  
Among all reported phylum the members of phylum Firmicutes 
were most dominant followed by Proteobacteria (Figure 
3). The Proteobacteria were further grouped as α, β, and 
γ-proteobacteria. These microbes been reported from cereal 
crops (Wheat, rice, maize, sugarcane, chick pea etc.) [17,27,42-
45]. The microbes have beneficial ecological significance as they 
have been reported as common as well as niche or host-specific. 
The niche of host-specific microbes may play important role in 
vegetation of specific plants in different abiotic stress regions. 

Figure 3: Phylogenetic tree showed the relationship among different groups of bacteria.
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Actinobacteria

Actinobacteria are of agriculturally important as they can 
enhance plant growth; improve plant nutrition through direct 
plant growth promoting. Several studies have indicated that 
Actinobacteria colonization can also result in increased plant 
vigor, and it confers tolerance to biotic and abiotic stresses, 
enhanced drought tolerance, and improved nutrients utilization 
[36,46]. On review diversity of actinobacteria associated 
with different crops all 6-classes have been reported, whose 
phylogenetic investigations have been carried out mainly by 
using 16S rRNA gene sequences. On review of different crops, 
it was found that microbes were most predominant and studied 
belong to all six classes in which many bacteria like Arthrobacter, 
Brevibacterium, Cellulomonas, Corynebacterium, Kocuria, 
Microbacterium, Micrococcus,  Mycobacterium, Rhodococcus  and  
Streptomyces have been reported from all crops reviewed.

In rhizospheric soil, Actinobacteria represents a high 
proportion of the microbial biomass. Their populations are found 
at 109-106 bacteria per gram of soil  and they represent more than 
30% of total population of soil microbiomes. Among different 
genera of actinobacteria two genera namely Streptomyces and 
Nocardia have been well represented in rhizospheric soil.  It has 
been reported that Streptomyces may be represent about >95% 
of the whole soil Actinobacterial microbiomes. The members 
of Actinobacteria play a major role in agricultural soil quality 
and soil fertility. Actinobacteria represents a large fraction of 
microbiomes in the root systems and is well established that 
they are dominant fraction of the microbial community in soils 
of wild and agricultural plant species [47-51]. Together with 
other phyla, the members of actinobacteria account for a large 
proportion in the rhizosphere of numerous plants including 
wheat (Triticum aestivum) [9,17,44,52,53]; rice (Oryza sativa) 
[48,54,55]; maize (Zea mays)  [50,56,57]; Sugarcane (Saccharum 
officinarum) [58-60]; soybean (Glycine max) [51,61-63]; pea 
(Pisum sativum) [51,64,65]; sunflower (Helianthus annuus) 
[49,66,67] and  chickpea  (Cicer arietinum) [68,69]. 

Firmicutes 

The member Bacillus and Bacillus derived genera (BBDG) 
belonged to phylum Firmicutes are associated with different 
plant, show different plant growth promoting attributes. Among 
bacilli, Bacillus and Paenibacillus are the most dominant genera 
followed by Alicyclobacillus, Aneurinibacillus, Virgibacillus, 
Salibacillus, and Gracilibacillus reported from different crops 
plants [32,33]. Garbeva et al. [70] showed that the majority 
(95%) of Gram-positive bacteria in soils under different types 
of management regimes (permanent grassland, grassland 
turned into arable land, and arable land), were putative Bacillus 
species; B. mycoides, B. pumilus, B. megaterium, B. thuringiensis, 
and B. firmus , as well as related taxa such as Paenibacillus, were 
frequently identified by sequencing the DNA bands obtained 
on DGGE gels. Bacteria of the genus Bacillus Cohn are widely 

dispersed in nature, easy to multiply, have a long shelf life when 
sporulated and are nonpathogenic. Bacillus subtilis, B. mycoides, 
B. pumilus, B. megaterium, B. thuringiensis and B. firmus are wide 
range of Bacillus present in rhizosphere soil [9,17,52,53].

Verma et al. [52], investigated forty one endophytic bacteria 
were isolated from surface-sterilized roots and culms of wheat 
var. HS507, growing in NW Indian Himalayas. These bacteria 
were screened in vitro for multifarious plant growth promoting 
attributes such as solubilization of phosphorus, potassium, 
zinc; production of indole acetic acids, hydrogen cyanide, 
gibberellic acid, siderophore and activities of nitrogen fixation, 
ACC deaminase and biocontrol against Rhizoctonia solani and 
Macrophomina phaseolina at low temperature (4 °C). One 
isolate IARI-HHS2-30, showed appreciable level of potassium 
solubilization was further characterized in vivo at control 
condition of low temperature. Based on 16S rDNA sequence 
analysis, this isolate was identified as Bacillus amyloliquefaciens  
assigned accession number KF054757. Analysis of the 
phylogenetic characterization showed close homology with 
typical psychrotolerant bacteria Bacillus amyloliquefaciens, B. 
methylotrophicus, B. polyfermenticus, B. siamensis, B. subtilis, 
and B. vallismortis. Endophytic nature and plant growth 
promoting ability of IARI-HHS2-30 was tested by qualitatively 
and followed by inoculation onto wheat seedlings in low 
temperature conditions. At 30 days after inoculation, Bacillus 
amyloliquefaciens IARI-HHS2-30 to wheat plants resulted 
in significant increase in root/shoot length, fresh weight, 
and chlorophyll a content. Plant growth promoting features 
coupled with psychrophilic ability suggest that this endophytic 
bacterium may be exploited as bio-inoculants for various crops 
in low temperature and high altitude condition.

Yadav et al. [33], reported and characterized psychrotrophic 
Bacilli from different sites in north western Indian Himalayas. A 
total of 247 morphotypes were obtained from different soil and 
water samples and were grouped into 43 clusters based on 16S 
rDNA-RFLP analysis. Sequencing of representative isolates from 
each cluster led to their identification and 43 Bacilli belonged to 
different species of eleven genera viz. Desemzia, Exiguobacterium, 
Jeotgalicoccus, Lysinibacillus, Paenibacillus, Planococcus, 
Pontibacillus, Sinobaca, Sporosarcina, Staphylococcus and 
Virgibacillus. With an aim to develop microbial inoculants that 
can perform efficiently at low temperatures, all representative 
isolates were screened for different plant growth promoting 
traits at low temperatures (5-15 °C). Among the strains, 
variations were observed for production of ammonia (22%), 
indole-3-acetic acid (20%), siderophores (8%), gibberellic acid 
(4%) and hydrogen cyanide (3%); solubilization of phosphate 
(12%), zinc (16%) and potassium (8%);  1-aminocyclopropane-
1-carboxylate deaminase activity (5%) and biocontrol activity 
(19%) against Rhizoctonia solani and Macrophomina phaseolina. 
Among all the strains Bacillus licheniformis, Bacillus muralis, 
Desemzia incerta, Paenibacillus tylopili and Sporosarcina 
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globispora were found to be potent candidates to be developed 
as inoculants as they exhibited multiple PGP traits at low 
temperature.

Verma et al. [9] investigated culturable Bacilli in six wheat 
cultivating agro-ecological zones of India viz: northern hills, 
north western plains, north eastern plains, central, peninsular 
and southern hills. These agro-ecological regions are based 
on the climatic conditions such as pH, salinity, drought and 
temperature. A total of 395 Bacilli were isolated by heat 
enrichment and different growth media. Phylogenetic analysis 
based on 16S rRNA gene sequencing led to the identification 
of 55 distinct Bacilli that could be grouped in five families, 
Bacillaceae (68%), Paenibacillaceae (15%), Planococcaceae  
(8%), Staphylococcaceae  (7%)  and Bacillales incertae 
sedis (2%), which included eight genera namely Bacillus, 
Exiguobacterium, Lysinibacillus, Paenibacillus, Planococcus, 
Planomicrobium, Sporosarcina and Staphylococcus. All 395 
isolated Bacilli were screened for their plant growth promoting 
attributes, which included direct-plant growth promoting 
(solubilization of phosphorus, potassium and zinc; production 
of phytohormones; 1-aminocyclopropane-1-carboxylate 
deaminase activity and nitrogen fixation), and indirect-plant 
growth promotion (antagonistic, production of lytic enzymes, 
siderophore, hydrogen cyanide and ammonia). To our knowledge, 
this is the first report for the presence of Bacillus endophyticus, 
Paenibacillus xylanexedens, Planococcus citreus, Planomicrobium 
okeanokoites, Sporosarcina sp. and Staphylococcus succinus in 
wheat rhizosphere and exhibit multifunctional PGP attributes. 
These niche-specific and multifarious PGP Bacilli may serve as 
inoculants for crops growing in respective climatic conditions.

 Proteobacteria

The phylum proteobacteria are a major group of Gram-
negative bacteria which included α/β/γ- proteobacteria.  
The γ-proteobacteria is the largest class in terms of species 
Pseudomonas and Azotobactor. Azotobactor is a gram-negative, 
aerobic, heterotrophic, rod shaped nitrogen fixing bacteria 
present in alkaline and neutral soils. They are free living 
organism present in soil, water and also in association with 
some plants [71-74]. Various species of Azotobacter such as 
A. agilis, A. chrococcum, A. beijerinckii, A. vinelandii, A. ingrinis 
has been reported from different crops. Among proteobacteria 
most dominant and plant growth promoting genera belong to 
Pseudomonas. Pseudomonas is a genus of Gram-negative, aerobic 
γ-proteobacteria, belonging to the family Pseudomonadaceae 
and containing 191 validly described species. The certain 
members of the Pseudomonas genus have been applied to 
cereal seeds or applied directly to soils as a way of preventing 
the growth or establishment of crop pathogens. The biocontrol 
properties of P. fluorescens and P. protegens are currently best-

understood, although it is not clear exactly how the plant growth-
promoting properties of P. fluorescens are achieved. Other 
notable Pseudomonas species with biocontrol properties include 
Pseudomonas, which produces a phenazine-type antibiotic active 
agent against certain fungal plant pathogens [75].

Verma et al. [20], reported 135 wheat associated plant 
growth promoting bacteria from acidic soil, among all isolates 
Pseudomonas chlororaphis IARI-THD-13, Pseudomonas 
fluorescens IARI-THD-21, Pseudomonas rhodesiae IARI-THD-11 
and  Pseudomonas rhodesiae IARI-THD-28 exhibited direct and 
indirect plant growth promoting attributes. Verma et al. [44], 
investigated thermotolerant wheat associated plant growth 
promoting bacteria which has been identified using 16S rRNA 
gene sequencing. Bacillus and Pseudomonas were dominant 
in rhizosphere while Methylobacterium were in phyllosphere. 
Different species of Pseudomonas fuscovaginae IARI-IIWP-29, 
Pseudomonas lini IARI-IIWP-33, Pseudomonas monteilii IARI-
IIWP-27, Pseudomonas stutzeri  IARI-IHD-4 and Pseudomonas 
thivervalensis IARI-IHD-3 have been sort out from wheat as 
endophytic, rhizospheric as well as epiphytic.  Verma et al. 
[19], reported psychrotolerant wheat associated bacteria from 
northern hills zone of India. A total 247 bacteria were isolated 
from five different sites. 16S rRNA gene based phylogenetic 
analysis, revealed that 65, 26, 8 and 1% bacteria belonged to 
four phyla namely Proteobacteria, Firmicutes, Actinobacteria 
and Bacteroidetes respectively. Overall 28% of the total 
morphotypes belonged to Pseudomonas followed by Bacillus 
(20%), Stenotrophomonas (9%), Methylobacterium  (8%),  
Arthrobacter  (7%),  Pantoea  (4%),  Achromobacter, Acinetobacter, 
Exiguobacterium and Staphylococcus (3%), Enterobacter, 
Providencia, Klebsiella and Leclercia (2%), Brevundimonas, 
Flavobacterium, Kocuria, Kluyvera and Planococcus (1%). 

Mechanisms of plant growth promotion 

Plants play an important role in selecting and enriching 
the types of bacteria by the constituents of their root exudates. 
Thus, depending on the nature and concentrations of organic 
constituents of exudates, and the corresponding ability of the 
microbes to utilize these as sources of energy, the microbial 
community have been developed. Microbes associated with 
crops are of agriculturally important as they can enhance plant 
growth; improve plant nutrition through biological N2-fixation 
and other mechanisms. The growth stimulation by microbes 
can be a consequence of biological N2-fixation, production 
of phytohormones, such as IAA and cytokines; biocontrol 
of phytopathogens through the production of antifungal 
or antibacterial agents, siderophore production, nutrient 
competition and induction of acquired host resistance  or 
enhancing the bioavailability of minerals (Table 1; Figure 4). 
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Table 1: Plant growth prompting bacterial strains isolated from different host plants.

Phylum Bacterial Strains Host References

Actinobacteria

Actinomycetes sp., Agromyces sp., Arthrobacter agilis, 
Arthrobacter humicola, Arthrobacter methylotrophus, 

Arthrobacter nicotinovorans, Arthrobacter sp., 
Brevibacterium epidermidis, Cellulosimicrobium 

sp.,  Corynebacterium callunae, Kocuria kristinae, 
Micrococcus luteus, Providencia alcalifaciens, Streptomyces 

acidiscabies, Streptomyces albovinaceus, Streptomyces 
carnosus, Streptomyces cyaneofuscatus, Streptomyces 

elanosporofaciens, Streptomyces enissocaesilis, 
Streptomyces flavotricini, Streptomyces griseus, 

Streptomyces kanamyceticu, Streptomyces Kunmingenesis, 
Streptomyces mutabilis,  Streptomyces scabrisporus, 

Streptomyces violaceusniger, Streptomyces viridificanswas, 
Zhihengliuella alba

Cowpea, Millet, Mustard,

Wheat [9,17-20,44,52,53,82,116-123-128]

Bacteroidetes
Flavobacterium psychrophilum, Flavobacterium sp.,

Sphingobacterium sp.,Chryseobacterium humi
Barley, Millet, Wheat [6,44,129-132]

Firmicutes

Bacillus aerophilus, Bacillus alcalophilus, B. altitudinis, 
B. amyloliquefaciens, B. aquimaris, B. cereus, B. 

circulans, B. endophyticus, B. flexus, B. fusiformis, B. 
licheniformis, B. megaterium, B. methylotrophicus, B. 
mojavensis, B. pumilus, B. solisalsi, B. sphaericus, B. 

subtilis, B. tequilensis, B. thuringiensis, Brevibacterium 
halotolerans, Exiguobacterium acetylicum, Lysinibacillus 

fusiformis, Lysinibacillus xylanilyticus, Paenibacillus 
alvei, Paenibacillus dendritiformis, Paenibacillus lautus, 

Paenibacillus polymyxa, Paenibacillus xylanexedens, 
Planococcus citreus, Planococcus rifietoensis, Planococcus 

salinarum, Planococcus salinarum, Planomicrobium 
okeanokoites, Staphylococcus equorum

Amaranth, Apple, Barley,

Buckwheat, Maize, 
Mustard, Oat, Pepper, 

Rice, Sorghum, 
Sunflower, Tomato, 

Wheat

[5,9,19,20,42,44,52,53,133-144]

Proteobacteria

Achromobacter piechaudii, Achromobacter xylosoxidans, 
Acinetobacter sp., Advenella sp., Agrobacterium 

larrymoorei, Alcaligenes sp., Azotobacter tropicalis, 
Bradyrhizobium sp., Enterobacter sp., Halomonas korlensis, 

Hartmannibacter diazotrophicus, Methylobacterium 
phyllosphaerae, M. radiotolerans, Nitrinicola 

lacisaponensis, Ochrobacterium haematophilum, Pantoea 
agglomerans sp., Providencia rustigianii, Pseudomonas 

aeruginosa, Pseudomonas cedrina, Pseudomonas 
fluorescens, Pseudomonas gessardii, Pseudomonas 

mendocina, Pseudomonas putida, Pseudomonas rhodesiae, 
Pseudomonas thivervalensis, Serratia marcescens, 

Tetrathiobacter sp.

Amaranth, Barley, 
Buckwheat, Cotton, 

Cowpea, Gram, Maize, 
Millet, Mustard, Oat, 

Rice, Sunflower, Tomato, 
Wheat

[6,9,14,17,19,43,44,52,53,130,140-
147]
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Figure 4: Plant growth promoting bacteria with different plant 
growth promoting attributes

Indole-3-acetic acid production 

Plant hormones are chemical messengers that affect a plant’s 
ability to respond to its environment. Hormones are organic 
compounds that are effective at very low concentration; they are 
usually synthesized in one part of the plant and are transported 
to another location. They interact with specific target tissues to 
cause physiological responses, such as growth or fruit ripening. 
Each response is often the result of two or more hormones acting 
together. Because hormones stimulate or inhibit plant growth, 
many botanists also refer to them as plant growth regulators. 
Researchers recognize five major groups of hormones: auxins, 
gibberellins, ethylene, cytokinins, and abscisic acid [14,76].

IAA (indole-3-acetic acid) is the member of the group of 
phytohormones and is generally considered the most important 
native auxin. It functions as an important signal molecule in 
the regulation of plant development including organogenesis, 
tropicresponses, cellular responses such as cell expansion, 
division, and differentiation, and gene regulation. Diverse 
bacterial species possess the ability to produce the auxin 
phytohormone IAA [77-79]. Different biosynthesis pathways 
have been identified and redundancy for IAA biosynthesis is 
widespread among plant-associated bacteria. Interactions 
between IAA-producing bacteria and plants lead to diverse 
outcomes on the plant side, varying from pathogenesis to 
phytostimulation. Verma et al. [19], biodiversity of wheat-
associated bacteria from the northern hills zone of India was 
deciphered. A total of 247 bacteria were isolated from five 
different sites. Among all isolated bacteria 14% showed IAA 
production in which strain IARI-HHS1-3 showed highest IAA 
production (70.8±1.5μg mg−1 protein day−1 ) followed by IARI-
HHS1-8 (69.1±0.5μg mg−1 protein day−1 )

Tabatabaei et al. [76], have reported Pseudomonas isolated 
from wheat. An in vitro experiment was conducted to observe 
the effect of the inoculation of four indole-3-acetic acid (IAA)-

producing Pseudomonas isolates and exogenous IAA on seed 
germination traits and α-amylase activity of durum wheat. 
The results showed inoculation with all bacterial isolates 
led to a decrease in the germination percent, although the 
extent of the depression varied with the isolate. A significant 
relationship between concentrations of bacterial IAA and 
the germination inhibition percent in durum wheat seeds by 
different bacteria strains was observed. Several plant growth 
promoting rhizobacteria Azotobacter sp., Rhizobium sp., Pantoea 
agglomerans, Rhodospirillum rubrum, Pseudomonas fluorescens, 
Bacillus subtilis and Paenibacillus polymyxa can produce 
cytokinins or gibberellins or both can produce either cytokinins 
or gibberellins or both for plant growth promotion. Some strains 
of phytopathogens can also synthesize cytokinins. However, it 
appears that plant growth promoting bacteria produce lower 
cytokinin levels compared to phytopathogens so that the effect 
of the plant growth promoting rhizobacteria on plant growth is 
stimulatory while the effect of the cytokinins from pathogens is 
inhibitory.

Phosphate and potassium solubilization

Phosphorus (P) is major essential macronutrients for 
biological growth and development. Bacteria offer a biological 
rescue system capable of solubilizing the insoluble inorganic P 
of soil and make it available to the plants. The ability of some 
bacteria to convert insoluble phosphorus (P) to an accessible 
form, like orthophosphate, is an important trait in PGP bacterium 
for increasing plant yields. The rhizospheric phosphate utilizing 
bacteria could be a promising source for plant growth promoting 
agent in agriculture. The use of phosphate solubilizing bacteria 
as inoculants increases the P uptake by plants. Phosphorus (P) 
is major essential macronutrients for biological growth and 
development. P in soils is immobilized or becomes less soluble 
either by absorption, chemical precipitation, or both. Under such 
conditions, microorganisms offer a biological rescue system 
capable of solubilizing the insoluble inorganic P of soil and make 
it available to the plants. Phosphate solubilizing bacteria include 
largely bacteria and fungi, which can grow in media containing 
tricalcium, iron and aluminium phosphate, hydroxyapatite, 
bonemeal, rock phosphate and similar insoluble phosphate 
compounds as the sole phosphate source. Such microbes not 
only assimilate P but a large portion of soluble phosphate is 
released in quantities in excess of their own requirement.

Phosphate solubilization is a common trait among microbes 
associated with different crops. For instance, the majority of 
microbial populations from wheat, rice, maize, and legumes were 
able to solubilize mineral phosphates in plate assays and A vast 
number of PGP microbes with phosphate solubilizing property 
have been reported which include members belonging to 
Burkholderia, Enterobacter, Halolamina, Pantoea, Pseudomonas, 
Citrobacter and Azotobacter [14,52,80-82]. Possible mechanisms 
for solubilization from organic bound phosphate involve either 
enzymes namely C-P lyase, non- specific phosphatases and 
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phytases. However, most of the bacterial genera solubilize 
phosphate through the production of organic acids such as 
gluconate, ketogluconate, acetate, lactate, oxalate, tartarate, 
succinate, citrate and glycolate.

Verma et al. [9], have reported 395 Bacilli from wheat and 
these bacteria have been screened for direct and indirect PGP 
traits. Of 55 representatives, 39, 18, and 40 strains exhibited 
solubilization of phosphorus, potassium, and zinc respectively. 
Among P, K, and Zn solubilizers, Paenibacillus polymyxa BNW6 
solublized highest amount of phosphorus 95.6±1.0mg L-1 

followed by Sporosarcina sp. BNW4 75.6±1.0mg L-1. Planococcus 
salinarum BSH13 (46.9±1.2mg L-1) and Bacillus pumilus BCZ15 
(7.5±0.5mg L-1) solubilized highest amount of potassium and 
zinc respectively.

Potassium (K) is the third major essential macronutrient 
for plant growth. The concentrations of soluble potassium in 
the soil are usually very low and more than 90% of potassium 
in the soil exists in the form of insoluble rocks and silicate 
minerals. Moreover, due to imbalanced fertilizer application, 
potassium deficiency is becoming one of the major constraints 
in crop production. Without adequate potassium, the plants 
will have poorly developed roots, grow slowly, produce small 
seeds and have lower yields. This emphasized the search to find 
an alternative indigenous source of potassium for plant uptake 
and to maintain potassium status in soils for sustaining crop 
production [52]. Plant growth promoting bacteria are able to 
solubilize potassium rock through production and secretion of 
organic acids. Potassium solubilizing plant growth promoting 
rhizobacteria such as Acidothiobacillus ferrooxidans, Bacillus 
edaphicus, Bacillus mucilaginosus, Burkholderia, Paenibacillus 
sp. and Pseudomonas has been reported to release potassium 
in accessible form from potassium bearing minerals in soils. 
Thus, application of potassium solubilizing plant growth 
promoting bacteria as biofertilizer for agriculture improvement 
can reduce the use of agrochemicals and support ecofriendly 
crop production. K-solubilizing bacteria (KSB) were found 
to resolve potassium, silicon and aluminium from insoluble 
minerals. Among different groups of microbes, BBDG were best 
characterized for K-solubilization [52,83]. The K-solubilizing 
bacteria may have use in the amelioration of K-deficient soil in 
agriculture. There are only few reports on K-solubilization by 
endophytic bacteria isolated from wheat [9,20,53].

Biological nitrogen fixation 

Nitrogen is the major limiting factor for plant growth, the 
application of N2-fixing microbes as biofertilizers has emerged 
as one of the most efficient and environmentally sustainable 
methods for increasing the growth and yield of crop plants. 
Biological nitrogen fixation (BNF) is one of the possible 
biological alternatives to N-fertilizers and could lead to more 
productive and sustainable agriculture without harming the 
environment. Many associative bacteria are now known to 
fix atmospheric nitrogen and supply it to the associated host 

plants. A variety of nitrogen fixing microbes like Arthrobacter, 
Azoarcus, Azospirillum, Azotobacter, Bacillus, Enterobacter, 
Gluconoacetobacter, Herbaspirillum, Klebsiella, Pseudomonas, 
and  Serratia  have been isolated from the rhizosphere of various 
crops, which contribute fixed nitrogen to the associated plants  
[84-88]. 

Choudhury et al. [89], reported that that the Azolla and 
cyanobacteria can supplement the nitrogen requirements 
of plants, replacing 30-50% of the required urea-N in rice 
production. BNF by Azotobacter, Clostridium, Azospirillum, 
Herbaspirillum and Burkholderia can substitute for urea-N, 
while Rhizobium can promote the growth physiology or improve 
the root morphology of the rice plant. Green manure crops 
can also fix substantial amounts of atmospheric N. Among 
the green manure crops, Sesbania rostrata has the highest 
atmospheric N2-fixing potential, and it has the potential to 
completely substitute for urea-N in rice cultivation. Gtari et al. 
[90], reported that non-Frankia actinobacteria has dramatically 
increased and has opened investigation on the origin and 
emergence of diazotrophy among actinobacteria. During the last 
decade, Mycobacterium flavum, Corynebacterium autotrophicum 
and a fluorescent Arthobacter sp. have been reported to have 
nitrogenase activity. Verma et al. [44], isolated and characterized 
drought tolerant nitrogen fixing rhizospheric actinobacteria 
Arthrobacter humicola IARI-IIWP-42 associated with wheat 
growing in in central zone of India. Verma et al. [19], reported 
the psychrotrophic microbes from wheat rhizosphere growing in 
northern hills zone of India. Arthrobacter methylotrophus IARI-
HHS1-1 and Arthrobacter methylotrophus IARI-HHS1-25 fixed 
atmospheric nitrogen 18.25±1.2 and 9.65±1.5 nmol ethylene 
h−1 mg−1 protein respectively.  Among isolated actinobacteria, 
three strains were identified as Arthrobacter methylotrophus, 
Arthrobacter nicotinovorans and Kocuria kristinae exhibited 
more than six different plant growth promoting activities at low 
temperature. 

ACC-deaminase activity

Ethylene (C2H4) an important plant-signaling molecule 
involves in many plant functions including seed germination, 
root hair development, root nodulation, flower senescence, leaf 
abscission and fruit ripening. Ethylene is produced by a two-step 
process that consists of enzymatic conversion of S-adenosyle 
methionine (SAM) to ACC followed by the conversion of ACC 
to ethylene, which is catalyzed by ACC-oxidase. Ethylene 
production in plants is increased upon exposure to biotic 
and abiotic stresses, including extreme salinity, temperature, 
drought, and infection by viral, bacterial and fungal pathogens. 
It has been investigated that certain microbes contain an 
enzyme ACC-deaminase which hydrolyses ACC, the precursor 
of ethylene into ammonia and α-ketobutyrate, thereby reducing 
the levels of ethylene which can inhibit plant growth. Currently, 
bacterial strains exhibiting ACC deaminase activity have been 
identified in a wide range of genera such as Acinetobacter, 
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Achromobacter, Agrobacterium, Alcaligenes, Azospirillum, 
Bacillus, Burkholderia, Enterobacter, Pseudomonas, Ralstonia, 
Serratia and Rhizobium [19,20,33,44,52,53,91]. Ethylene is a key 
regulator of the colonization of plant tissue by bacteria which 
in turn suggests that the ethylene inhibiting effects of ACC-
deaminase may be a bacterial colonization strategy. Regardless 
of why plant-associated bacteria produce ACC-deaminase, their 
application can clearly is a very useful strategy to mitigate 
the effects of various stressors on cultivated plants. Generally, 
ethylene is an essential metabolite for the normal growth and 
development of plants [92,93]. Under stress conditions like 
those generated by salinity, drought, water logging, heavy 
metals and pathogenicity, the endogenous level of ethylene is 
significantly increased which negatively affects the overall plant 
growth.  Plant growth promoting bacteria which possess the 
enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, 
facilitate plant growth and development by decreasing ethylene 
levels, inducing salt tolerance and reducing drought stress in 
plants [20,44,93,94].

Biocontrol 

Phytopathogenic microbes are a major and chronic 
threat to sustainable agriculture and ecosystem stability 
worldwide subverts the soil ecology, disrupt environment, 
degrade soil fertility and consequently show harmful effects 
on human health, along with contaminating ground water. 
Plant growth promoting bacteria is a promising sustainable 
and environmentally friendly approach to obtain sustainable 
fertility of the soil and plant growth indirectly. This approach 
takes inspire a wide range of exploitation of plant growth 
promoting bacteria led to reducing the need for agrochemicals 
(fertilizers and pesticides) for improve soil fertility by a variety 
of mechanisms that via production of antibiotics, siderophores, 
HCN, hydrolytic enzymes. Phytopathogenic microorganism can 
control by releasing siderophores, β-1, 3-glucanase, chitinases, 
antibiotics, fluorescent pigment or by cyanide production. World 
agriculture faces a great loss every year incurred from infection 
by pathogenic organisms. Application of microorganism for 
the control of diseases seems to be one of the most promising 
ways. Biocontrol systems are ecofriendly, cost-efficient and 
involved in improving the soil consistency and maintenance of 
natural soil flora. To act efficiently, the biocontrol agent should 
remain active under large range of conditions viz., varying pH, 
temperature and concentrations of different ions. Biocontrol 
agents limit growth of pathogen as well as few nematodes and 
insects.  Recent studies have indicated that biological control 
of bacterial wilt disease could be achieved using antagonistic 
bacteria. Different bacterial species, namely, Alcaligenes 
sp., Bacillus pumilus, B. subtilis, B. megaterium, Clavibacter 
michiganensis, Curtobacterium sp., Flavobacterium sp., Kluyvera 
sp., Microbacterium sp., Pseudomonas alcaligenes, P. putida, 
P. fluorescens have been reported as endophytes and were 
inhibitory to plant pathogens [19,95-100].

Iron is an essential growth element for all living organisms. 
The scarcity of bioavailable iron in soil habitats and on plant 
surfaces foments a furious competition. Under iron-limiting 
conditions PGPB produce low-molecular-weight compounds 
called siderophores to competitively acquire ferric ion. 
Siderophores (Greek: «iron carrier») are small, high-affinity 
iron chelating compounds secreted by microorganisms such 
as bacteria, fungi and grasses [101-104]. Microbes release 
Siderophores to scavenge iron from these mineral phases by 
formation of soluble Fe3+ complexes that can be taken up by active 
transport mechanisms. Many siderophores are non-ribosomal 
peptides, although several are biosynthesised independently. 
Siderophores are low molecular weight bio-molecules 
secreted by micro-organisms in response to iron starvation 
for acquisition of iron from insoluble forms by mineralization 
and sequestration. Although some siderophores are known to 
chelate other ions, their specificity and avidity for iron is the 
most consistent feature.  Many plants can use various bacterial 
siderophores as iron sources, although the total concentrations 
are probably too low to contribute substantially to plant iron 
uptake. Siderophores have been implicated for both direct and 
indirect enhancement of plant growth by plant growth promoting 
bacteria. The direct benefits of bacterial siderophores on the 
growth of plants have been demonstrated by using radio labeled 
ferric siderophores as a sole source of iron showed that plants 
are able to take up the labeled iron by a large number of plant 
growth promoting bacteria including Aeromonas, Azadirachta, 
Azotobacter, Bacillus, Burkholderia, Pseudomonas, Rhizobium, 
Serratia and Streptomyces sp. [99,105-107].

Certain bacteria synthesize a wide spectrum of 
multifunctional polysaccharides including intracellular 
polysaccharides, structural polysaccharides, and extracellular 
polysaccharides. Production of exo polysaccharides is generally 
important in biofilm formation; root colonization can affect 
the interaction of microbes with roots appendages. Effective 
colonization of plant roots by EPS-producing microbes helps to 
hold the free phosphorous from the insoluble one in soils and 
circulating essential nutrient to the plant for proper growth 
and development and protecting it from the attack of foreign 
pathogens. Other innumerable functions performed by EPS 
producing microbes constitute shielding from desiccation, 
protection against stress. PGP bacteria improve plant growth 
by preventing the proliferation of phytopathogens and thereby 
support plant growth. Some PGP bacteria synthesize antifungal 
antibiotics, e.g. Pseudomonas fluorescens produces 2,4-diacetyl 
phloroglucinol which inhibits growth of phytopathogenic fungi. 
In recent years, fluorescent Pseudomonas has been suggested as 
potential biological control agent due to its ability to colonize 
rhizosphere and protect plants against a wide range of important 
agronomic fungal diseases such as black root-rot of tobacco, 
root-rot of pea, root-rot of wheat, damping-off of sugar beet 
and as the prospects of genetically manipulating the producer 
organisms to improve the efficacy of these biocontrol agents 
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[108-112].

Growth enhancement through enzymatic activity is 
another mechanism used by plant growth promoting bacteria. 
Plant growth promoting bacterial strains can produce certain 
enzymes such as chitinases, dehydrogenase, β-glucanase, 
lipases, phosphatases, proteases etc. exhibit hyperparasitic 
activity, attacking pathogens by excreting cell wall hydrolases. 
Through the activity of these enzymes, plant growth promoting 
bacteria play a very significant role in plant growth promotion 
particularly to protect them from biotic and abiotic stresses 
by suppression of pathogenic fungi including Botrytis cinerea, 
Sclerotium rolfsii, Fusarium oxysporum, Phytophthora sp., 
Rhizoctonia solani, and Pythium ultimum [113-115].

Effects of soil bacteria on the soil ecosystem

Soil bacteria including different groups along with fungi 
are able to enhance the availability of different nutrients 
by utilizing different mechanisms. PGP abcteria are able to 
enhance the availability of different nutrients including N, 
P and micronutrients e.g. Rhizobium sp., in symbiosis with 
their legume host plant, and Azospirillum in non-symbiotic 
association with their host plant, can fix atmospheric N2 
[148-153]. PGP bacteria including Arthrobacter, Bacillus and 
Pseudomonas are able to enhance P availability, by production 
of organic acids and phosphatase enzymes through producing 
siderophores, PGP bacteria can also increase Fe solubility and 
hence uptake by plant [46]. Soil particles are bound by organic 
chemicals including compounds produced by soil bacteria. A 
wide range of biochemical is produced by soil bacteria among 
which polysaccharides are the ones with the highest impact on 
binding soil particles. The mineralizing effects of soil microbes 
on organic matter can also influence soil structure. The enhanced 
growth of plant growth by soil microbes and hence the increased 
amount of root exudates and rhizo deposition can also affect soil 
structure directly or by increasing the microbial population and 
activities, indirectly [154-156].

Soil microbes produce a wide range of biochemical, affecting 
soil environment. Among which there are the products, adversely 
affecting the growth and activities of soil pathogens including 
soil bacteria and soil fungi e.g. PGP bacteria produce hydrogen 
cyanide (HCN), which can have unfavorable effects on the 
growth of soil pathogens. In addition through stimulating plant 
systemic resistance, soil microbes can enhance plant resistance 
to pathogens. The presence of soil microbes in the rhizosphere 
and production of different compounds can stimulate plant 
growth and systemic resistance. Generally, the adverse effects 
of PGP bacteria, which is mostly related to Pseudomonas and 
Bacillus on soil pathogens is through the production of antibiotic 
compounds (HCN, pyrrolnitrin, phloroglucinols, phenazines, 
pyoluteorin, and cyclic lipopeptides); plant induced systemic 
resistance and interfering with pathogens ability to suppress 
plant growth.

In the recent years there have been some interesting 
research work regarding the use of PGP bacteria under stress. 
There are many soil stressors affecting plant growth and yield 
production including soil pH, suboptimal root zone temperature, 
and heavy metals. Interestingly, researchers have found that the 
adverse effects of different stressors on the Rhizobium-legume 
N2 fixation can be alleviated by the use of signal molecule 
genistein. Genistein is produced by the specific legume host plant 
like soybean (Glycine max L.) activating the nodulation (nod) 
genes in Bradyrhizobium japonicum [157,158]. Under humid 
or dry climate conditions soil pH can fluctuate much. The high 
amounts of rain in the humid area reduce soil pH significantly. 
PGPR bacteria can also alleviate salinity stress on plant growth. 
They are able to produce the important bacterial enzyme ACC-
deaminase under different conditions including stress, which 
can effectively control the stress. This is because, as previously 
mentioned, ACC-deaminase can catalyze the ACC, which is the 
prerequisite for the production of the stress hormone, ethylene. 
Increased level of ethylene in the plant can adversely affect 
plant growth and yield production. Plant physiological and 
morphological characters are also important in the alleviation 
of stress in symbiosis of non symbiosis association with their 
associative soil microbes. The more resistant plant species can 
perform more efficiently under stress and their symbiosis with 
their associative soil microbes also can intensify such abilities. 

Conclusion and Future Prospect

Sustainable agriculture requires the use of strategies to 
increase or maintain the current rate of food production while 
reducing damage to the environment and human health. The 
use of microbial plant growth promoters is an alternative to 
conventional agricultural technologies. Plant growth-promoting 
microbe can affect plant growth directly or indirectly. The direct 
promotion of plant growth by PGP microbes, for the most part, 
entails providing the plant with a compound that is synthesized 
by the bacterium or facilitating the uptake of certain nutrients 
from the environment. The indirect promotion of plant growth 
occurs when PGP microbes decrease or prevent the deleterious 
effects of one or more phytopathogenic organisms. The need 
of today’s world is high output yield and enhanced production 
of the crop as well as fertility of soil to get in an ecofriendly 
manner. Hence, the research has to be focused on the new 
concept of rhizo engineering based on favorably partitioning of 
the exotic biomolecules, which create a unique setting for the 
interaction between plant and microbes. Future research in 
rhizosphere biology will rely on the development of molecular 
and biotechnological approaches to increase our knowledge of 
rhizosphere biology and to achieve an integrated management 
of soil microbial populations. The application of multi strain 
bacterial consortium over single inoculation could be an 
effective approach for reducing the harmful impact of stress on 
plant growth.
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